
High Rate

(Precision and Otherwise)

Experiments at a Neutrino Factory
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1. What Role does Near-Detector Physics Play

at a Neutrino Factory?

2. Anatomy of a High Rate Neutrino Factory

Experiment

3. Examples:

� Illumination by Neutrinos

� By-Products of Neutrinos

� Interactions of Neutrinos

4. Conclusions
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The Role of High Rate Experiments

Near detector physics will not

drive the design or construction

of a neutrino factory

So why is this important?

� A neutrino factory is likely to be a >
� 109 CHF ma-

chine.

FNAL Main Injector < Neutrino Factory � Linear Collider

� Opportunity cost of building a neutrino factory may

therefore be several incremental programs at existing

facilities

� We are therefore obligated to consider whether such

a facility serves a broad range of investigations

And does it pass this test?

� Highly intense beams not only contend with 1=L2,

but also defeat GFs.

. Light targets

. High rate production

. Rare processes

� In each case, interesting physics opportunities present

themselves
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The Opportunities

1020/yr � decays in the green straight section )

5{8% of all interactions in detector 10 cm in radius

40{50% of all interactions in detector 50 cm in radius

� 1:5{3� 106 �
E�

50 GeV
/kg/yr at beam center

(FNAL Neutrino Factory Study Group Parameters)

Near Detector Hall

Fe Shield
Magnetized

30m

70m

800 m

50 GeV

c.f.: Competing facilties

Beam hE�i [GeV] � per year

NuTeV/CCFR (Fermilab) 100 � 1014=m2

CHORUS/NOMAD (CERN) 30 � 3� 1015=m2

MINOS Near (Fermilab) 15 � 1017=m2

Neutrino Factory 30 5 � 1019=m2
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Fluxes

Near Detector Hall

Fe Shield
Magnetized

30m

70m

800 m

50 GeV

(50, 25, 10 GeV beams shown)



Kevin McFarland, University of Rochester, High Rate Experiments at a � Factory 6

Fluxes II

Near Detector Hall

Fe Shield
Magnetized

30m

70m

800 m

50 GeV

� radial distribution for 50 GeV muon beam

1



� 500
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Neutrino Detectors??

(multi-purpose detector design of B. King)

Small targets open up new possibilities in

� Target material

� Final state detection
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Why Detect Neutrino Interactions?

The properties of the neutrino

make it a wonderful laboratory

for searching for new physics

. . . because backgrounds

from neutrino

interactions

are small!

�Weak Interaction is featured

� Clean probe of hadron structure

� Rare � processes
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Nucleon Structure at a Neutrino Factory:

Illumination

Why use neutrinos to probe nucleon structure?

� xF3

. Separation of sea and valence

� Fundamental for dynamical models

� Evolution to high Q2 (LHC)

. Nuclear e�ects in xF3?

� Polarization of Beam

. Can't do better

. Polarized targets?

� Flavor tagging

. �s! ��c, c! X`� tags strange quarks

. �d! ��u but �u! d�+

. �c! ��c, c! X`� (? hard. . . )

� High rate means we can wean �N from its addiction

to isoscalar targets

. Can �nally take advantage of the above!
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The Deal with the Devil

A neutrino factory solves the rate problem . . .

. . . but high energy may be far away

20 GeV � Beam

� Can't go as low in x as one might like for sum rules
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Polarized Targets

(D. Harris, KSM)

Proof of principle: SMC target

� Solid Butanol (CH3(CH2)3OH) target

� Two cells 60cm long, 5cm diameter: 2� 1:42 kg each

� 2.5T B Field, 1K 100% polarized electrons

� Dilution factor: f=0.1 (SMC, hep-ex/9702005)

1m

Target cells

Dilution refrigerator Superconducting magnets

3He Condenser

Sintered
Heat Exchanger

Mixing chamber

4He phase 
separator4He Evaporator

Solenoid magnet

Trim coils

Dipole magnet 

3He/4He Distiller

Imagine a 120 kg (1:5 m long, 20 cm radius) Target:

is this crazy?
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Polarized Targets (cont'd)

(D. Harris, KSM)

Goal: Flavor-Separated Spin

�u! `�d �d! `�u
�d! `+u �u! `+d
�s! `+c �s! `�c

� q and q from the inelasticity distributions

� �/� from lepton 
avor

�(�)s(s)! ��c(c) separated from c! `�X �nal states

(� 1% of cross-section at 50 GeV)

) Measure strange sea polarization to � 1% precision

(one year)

� Vastly superior 
avor separation compared to hadron-

based separation in HERMES
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Neutrino Charm Factory: By-Products

�charm
�CC

�bottom
�CC

� Charm Production averages � 3% of cross-section

� Bottom Production not accessible at 50 GeV

. precise measure of jVubj at high E�? (B. King)
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Neutrino Charm Factory II

� Charm spectrum is soft by �xed target standards

� Still, 105/kg-yr charmed hadrons above 10 GeV

� Rate is high; non-charm backgrounds relatively low

� Tagging

. � s! `�c

. � s! `+c

. Tagging backgrounds are typically very low

� Most common mistag from c! `+X�
(benign since charm is misreconstructed also)

� So what to do with � 108 tagged charm?
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D
0
�D

0 Mixing

� D0
�D

0
is a clean signature of

new physics if seen above 10�6 level

� e+e� and Fixed Target currently at few�10�3 level

(BaBar estimates few10�4 sensitivity with years at

design luminosity)

. Stuck on systematics/backgrounds

. Reconstructed 
avor from D0
! K��+

(but D0
! K+�� is 1% of this rate)

. Proper lifetime analysis required to get below 10�2

One idea for D0
� D

0 Mixing in a Neutrino
Factory Beam:

� High momentum lepton is tag

� Measure (inclusive) second lepton charge

. about 30% from neutral D mesons

. 10% eÆcient, assuming only e� useful

� There is a few�10�2 background from light meson decays

in showers for the case of muons

. probe 5� 106 D0 decays

� D0
�D

0
mixing gives `�tag`charm�

. vs dominant `�tag`
�

charm
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Probes of Weak Interactions: Processes

q

ν

q

Z

ν,

,

l

W

� High statistics

� Needs high energy

� Traditional (low rate)

process

ν

Z

e e

ν

� Possible at low energy

� Low rate

� Normalization problem

ν

e

µ

W

ν

� Low rate

� Backgrounds

N N

W

γ

ν ν

lν

l
Z

l

� W -Z interference

� But N is a problem
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Neutrino-Electron Scattering

ν

e

l

l

��e
�
! ��e

� NC only

��e
�
! �e�

� CC only (\inverse muon decay")

��e
�
! ��e

� NC only

�ee
�
! �ee

� NC and CC

�ee
�
! �ee

� NC and CC

�ee
�
! ���

�; ���
�; ud : : : s-channel annihilation

Why are these interesting?

� Target is a point particle: well-predicted cross-section

� NC processes sensitive to new physics (��ee coupling)
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Neutrino-Electron Scattering

(normalization)

�(E� =1 GeV )

� CC-only process in �� beam (IMD) easy to normalize

� �+ beam, �ee! �ee varies by 0:1% for Æsin2 �W � 0:0005

� Part per mil normalization available for 400 kg-yr
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Neutrino-Electron Scattering (sin2 �W )

(B. King, J. Yu, KSM)

For 1 GeV neutrinos,

(1046 cm�2 is 20 kg of material in beam)

� Reasonable to imagine Æsin2 �W (stat)� 0:00002�0:00004
(2000kg-yr)

� �� beam easy to normalize (IMD) but less sensitive
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\External Tridents"

(A. Melissinos, KSM)

N N

W

γ

ν ν

lν

l
Z

l

Nuclear form-factor leads

to a large uncertainty in

the cross-section

External �eld!

(well-determined, but weaker)
W

γ

ν ν

lν

l
Z

l

��
 =
�G2

Fs

9�2
log

s

smin
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\External Tridents" (cont'd)

(A. Melissinos, KSM)

In an external magnetic �eld:

P`+`� =
�G2

Fs

9�2
log

s

(2me)2
B2E�

2m2
`

l

For a 2 T, 10 m long �eld 20 cm in radius (50 GeV �
beam),

Ne+e� � 3� 103=yr

N�+�� � 0:03=yr

� Signal is low mass, forward e+e� pairs from external

�eld and nothing else

� High rate

� Needs a �e or �e beam to test interference of W/Z
terms (T. Bolton)

� Sensitive to anomolous W
 or Z
 couplings(?)
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Direct Probes of Neutrino Properties

Some of the laundry list:

� Charge radius < r2 > as an elastic form-factor or

radiative emission

� Decays of heavy neutrinos with mL0 � 50 MeV

mL0 ! e+e��

� Interaction/modi�cation of � beam in high external

�eld

� . . .

Why persue these at a neutrino factory?

� Roughly 104 increase in available neutrino 
uxes



Kevin McFarland, University of Rochester, High Rate Experiments at a � Factory 23

Conclusions

1. Short Baseline Physics is an important part of a neu-

trino factory

� Neutrino \facility" for many di�erent types of physics

� Unique capabilities to probe strong, weak interac-

tions

2. Near detector lab crucial for long baseline measure-

ments

� Flux, cross-sections, testbeam

3. Like the long baseline frontier, this rate of neutrinos

in another unexplored opportunity

� May yield surprises!


